Differential Equations PhD Qualifying Examination National Sun Yat-sen University September, 2023

There are in total 100 points. You get full points of each problem only if your written reasoning is complete and the answer is correct.

Problem 1. Let $M_n(\mathbb{R})$ be the vector space of all n-by-n real matrices. Given $A \in M_n(\mathbb{R})$ and $t \in \mathbb{R}$, the matrix exponential is defined by

$$e^{tA} := \sum_{j=0}^{\infty} \frac{(tA)^j}{j!}.$$

Determine whether each of the following statements is true. If it is true, give a proof. If it is false, give a counterexample.

- (i) (10 points) If $A, B \in M_n(\mathbb{R})$ satisfy AB = BA, then $e^{t(A+B)} = e^{tA}e^{tB}$ for all $t \in \mathbb{R}$.
- (ii) (10 points) There exist $A, B \in M_n(\mathbb{R})$ such that $e^A = e^B = \mathcal{I}_n$ but $AB \neq BA$. Here $\mathcal{I}_n \in M_n(\mathbb{R})$ is the identity matrix.

Problem 2. Consider the Duffing pendulum equation

$$\ddot{x}(t) + V'(x(t)) = 0$$

with the potential $V(x) = x^4 - 2x^2 + 1$ (and thus $V'(x) = 4x^3 - 4x$).

- (i) (6 points) Show that there are three equilibria $(x, \dot{x}) = (-1, 0), (0, 0), (1, 0)$. For each equilibrium, determine whether it is locally stable or unstable.
- (ii) (6 points) Prove that there exists a homoclinic orbit that connects the equilibrium $(x, \dot{x}) = (0, 0), i.e., a nonequilibrium solution x(t) such that <math>\lim_{t \to \pm \infty} x(t) = 0$ and $\lim_{t \to \pm \infty} \dot{x}(t) = 0.$
- (iii) (8 points) Prove that for every p > 0 there exists a periodic orbit with p as the minimal period and it is symmetric to the origin $(x, \dot{x}) = (0, 0)$.

Problem 3. Let $a \in C^0(\mathbb{R})$. Consider the Sturm-Liouville eigenvalue problem

$$u''(x) + a(x)u(x) = \mu u(x)$$

on the unit interval $x \in (0,1)$ with Neumann boundary conditions u'(0) = u'(1) = 0.

- (i) (10 points) Show that all eigenvalues are real, algebraically simple, and can be listed as $\mu_0 > \mu_1 > \ldots > \mu_n > \ldots$ such that $\lim_{n \to \infty} \mu_n = -\infty$.
- (ii) (10 points) Show that the n-th eigenfunction $u_n(x)$ associated with μ_n possesses exactly n simple zeros in (0, 1).

Problem 4. (10 points) Let $a, b : \mathbb{R} \to (0, \infty)$ be bounded continuous functions. Consider a solution $u \in C^1(\mathbb{R}^2, \mathbb{R})$ of

$$a(x)u_x(x,y) + b(y)u_y(x,y) = 0.$$

Prove the existence of functions $f, g, h \in C^1(\mathbb{R})$ such that

$$u(x,y) = f(g(x) + h(y)).$$

Problem 5. Answer the following questions.

(i) (10 points) Show that we can express a solution $u \in C^{\infty}((0,\infty) \times \mathbb{R}, \mathbb{R})$ of the linear heat equation

$$u_t(t,x) = u_{xx}(t,x),$$

in the form

$$u(t,x) = \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{4t}} u_0(y) \,\mathrm{d}y,\tag{1}$$

where $u_0 \in C^0(\mathbb{R})$ is any bounded function.

(ii) (10 points) Let u(t, x) be the solution expressed in (1). Show

$$\lim_{t \to 0^+} u(t, x) = u_0(x) \quad \text{for all } x \in \mathbb{R}.$$

Problem 6. (10 points) Let $u \in C^2(\mathbb{R}^n)$ be a bounded function such that $\Delta u = 0$. Show that u is a constant function.