

National Sun Yat-Sen University

Qualifying Exam -Functional Analysis

Total points available: 100

Time:

Name and student number:

- There are 7 problems. You need to answer 5 of them.
- Please write down problem numbers that you would like to answer at the beginning of the answer sheet. If you answer extra problems, you would **not** receive extra points.
- 1. (20 points) Let X be a Banach space with norm $\|\cdot\|$.
 - (a) Show that if $x_n \to x$ strongly (in X), then $x_n \to x$ weakly.
 - (b) Suppose that $x_n \to x$ weakly. Would $x_n \to x$ strongly? Justify your answer.
- 2. (20 points) Let \mathcal{H} be a Hilbert space with norm $\|\cdot\|$. Prove that if A is a compact operator on \mathcal{H} , then either $\pm \|A\|^2$ is an eigenvalue of A^*A .
- 3. (20 points) Let \mathcal{H} be a Hilbert space with norm $\|\cdot\|$. Suppose that $h_n \to h$ weakly and $\|h_n\| \to \|h\|$. Show that $\|h_n h\| \to 0$.
- 4. (20 points) Show that if the closed unit ball in a normed linear space X is compact, then X is finite-dimensional.
- 5. (20 points) Prove that if K(x, y) is continuous on $[0, 1] \times [0, 1]$, then the operator T defined by

$$(T(f))(x) = \int_{[0,1]} K(x,y)f(y)dy$$

(over C[0,1]) is compact, and find T^* .

- 6. (20 points) State and prove the Uniform Boundedness Principle.
- 7. (20 points)
 - (a) Define the dual space of a Banach space X.
 - (b) Let $p \ge 1$ and q satisfy $\frac{1}{p} + \frac{1}{q} = 1$. Show that the dual space of $L^p[0,1]$ is $L^q[0,1]$.