Matrix Analysis

September 1, 2022

Please write down all the details of your computation and answers.

[1]. (10%) Given an $n \times n$ real matrix A which has distinct eigenvalues.

Show that the eigenvectors associated with the distinct eigenvalue are linearly independent.

[2]. (5%+5%+5%) Given a matrix

	1	1	2	1	1
	1	5	2	9	1
A =	2	2	5	4	3
	1	9	4	21	3
	1	1	3	3	3

(a) Compute the LU factorization of A.

- (b) Compute the determinant of A.
- (c) Find a basis of null space of A.
- [3]. (15%) State and prove Schur's unitary triangularization theorem.
- [4]. (15%) Let

$$A = \begin{bmatrix} 2 & 0 & 0 & -1 \\ 3 & 2 & 0 & 2 \\ 1 & 0 & 2 & 4 \\ 1 & 0 & 0 & 4 \end{bmatrix}$$

Find a matrix P such that $P^{-1}AP$ is in Jordan canonical form.

- [5]. (10%) Let vectors $\mathbf{x} = [0, 2, 0, 2]^T$ and $\mathbf{y} = [2, 0, 2, 0]^T$. Find an orthogonal matrix B such that $B\mathbf{x} = \mathbf{y}$.
- [6]. (10%+10%) Given a 5 × 4 real matrix $A \in \mathbb{R}^{5\times 4}$.
 - (a) State one of methods to find the QR factorization of A in detail.
 - (b) If rank(A) = 4, show that there exist a unique $Q \in \mathbb{R}^{5 \times 4}$ with orthonormal columns and a unique upper triangular matrix $R \in \mathbb{R}^{4 \times 4}$ with positive diagonal elements such that A = QR.
- [7]. (15%) Let $A \in \mathbb{R}^{n \times n}$ be nonnegative. The spectral radius $\rho(A) = \max\{|\lambda| : \lambda \text{ is an eigenvalue of } A\}$. Prove or disprove that if A has a positive eigenvector, its corresponding eigenvalue is $\rho(A)$.

----- End -----