Ph.D. Qualifying Examination Matrix Theory Sep. 5, 2024

Please write down all the detail of your computations and proofs.

1. (10%) Let A be an $n \times n$ Hermitian matrix. Prove that there exist real numbers $\{c_i\}_{i=1}^n$ and an orthonormal set of column vectors $\{\mathbf{v}_i\}_{i=1}^n$ such that

$$A = \sum_{i=1}^{n} c_i \mathbf{v}_i \mathbf{v}_i^T$$

- 2. (10%) Let A be an $n \times n$ Hermitian positive semidefinite matrix. Prove that there exists a unique Hermitian positive semidefinite square root matrix B of A such that $B^2 = A$.
- 3. (15%) Consider the Fibonacci sequence $y_{n+1} = y_n + y_{n-1}$ for $n = 1, 2, \cdots$ with $y_0 = 0$ and $y_1 = 1$. Find the matrix A satisfying

$$\left[\begin{array}{c} y_{n+1} \\ y_n \end{array}\right] = A \left[\begin{array}{c} y_n \\ y_{n-1} \end{array}\right]$$

Diagonalize A and use it to obtain the explicit exact formula of y_n .

4. (15%) Let $\|\cdot\|_v$ be an vector norm on \mathbb{C}^n . Prove that

$$\left\| |A| \right\|_v = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|A\mathbf{x}\|_v}{\|\mathbf{x}\|_v}$$

is a matrix norm and is compatible with $\|\cdot\|_{v}$.

- 5. (15%) Prove that all irreducibly diagonally dominant matrices are nonsingular.
- 6. (15%) Let A be an $n \times n$ diagonalizable positive matrix with each column sum 1. What is the limit of the sequence $\mathbf{x}_{k+1} = A\mathbf{x}_k$ if \mathbf{x}_0 is nonnegative with sum of entries 1? What is the limit of A^k as $k \to \infty$? Prove your answers.
- 7. (20%) Let A be a real $m \times n$ matrix, $\mathcal{N}(A)$ and $\mathfrak{R}(A)$ be its null and range spaces, respectively. Prove that the orthogonal direct sums

1)
$$\mathbb{R}^{n} = \mathcal{N}(A) \stackrel{\perp}{\oplus} \mathfrak{R}(A^{T}),$$
 2) $\mathbb{R}^{m} = \mathcal{N}(A^{T}) \stackrel{\perp}{\oplus} \mathfrak{R}(A),$
3) the restriction $A|_{\mathfrak{R}(A^{T})} : \mathfrak{R}(A^{T}) \to \mathfrak{R}(A)$ is isomorphic,
4) $\mathcal{N}(AA^{T}) = \mathcal{N}(A^{T}),$ 5) $\mathfrak{R}(AA^{T}) = \mathfrak{R}(A).$