DEPARTMENT OF APPLIED MATHEMATICS NATIONAL SUN YAT-SEN UNIVERSITY

Ph. D. Qualifying Examination Spring, 2022.

REAL ANALYSIS

Answer all 10 questions below, each of them carries 10 points out of 100 points.

- (1) Let $\{a_{\lambda} : \lambda \in \Lambda\}$ be a family of real numbers, where the index set Λ might not be countable.
 - (a) Define the notion of the convergence of the sum $\sum_{\lambda} a_{\lambda}$.
 - (b) When the sum is finite, show that $a_{\lambda} = 0$ for all but at most countably many λ 's.
- (2) Prove that if a subset A of [0, 1] has measure zero then

$$A^3 = \{x^3 : x \in A\}$$

has measure zero, too. In general, if f is a continuously differentiable function on [0, 1], can you conclude again that

$$f(A) = \{f(x) : x \in A\}$$

has measure zero? Justify your answer.

(3) Let I = [0, 1]. Let $m^*(E)$ and $m_*(E)$ be the outer and inner (Legesgue) measures of $E \subseteq \mathbb{R}$, respectively. In other words,

 $m^*(E) = \inf\{m(O) : E \subseteq O \text{ and } O \text{ is an open set in } I\},\$

$$m_*(E) = \sup\{m(K) : K \subseteq E \text{ and } K \text{ is a compact set in } I\}.$$

Show that

- (a) $m^*(A) + m_*(A) = 1$ for any subset of *I*.
- (b) E is Lebesgue measurable if and only if $m^*(E) = m_*(E)$.
- (c) E is Lebesgue measurable if and only if

$$1 = m^*(E) + m^*(I \setminus E).$$

- (4) Let $f : [0,1] \longrightarrow \mathbb{R}$ be continuous and of bounded variation. Assume that f is absolutely continuous on $[\epsilon, 1]$ for each $\epsilon > 0$. Show that f is absolutely continuous on [0, 1].
- (5) Let f_n → f on [0,1] in the following sense: for every x in [0,1], if x_n → x, then f_n(x_n) → f(x). Show that f is continuous if all f_n are continuous. [Hint: Show that there are 1 ≤ n₁ < n₂ < ··· such that f_{nk}(x_k) → f(x). Then consider the sequence (y_n) = (x₁,...,x₁, x₂,...,x₂, x₃,...,x₃,...).]
 (6) Let {G_n}_n be a sequence of non-empty open sets in [0,1] with the Lebesgue
- (6) Let $\{G_n\}_n$ be a sequence of non-empty open sets in [0,1] with the Lebesgue measures $m(G_n) \leq 1/2^n$ for $n = 1, 2, \dots$ Let

$$f(x) = \sum_{n=1}^{\infty} m(G_n \cap [0, x]), \quad 0 \le x \le 1.$$

Show that f is continuous, non-decreasing, and that $f'(x) = +\infty$ for all x in $\bigcap_{n=1}^{\infty} G_n$.

(7) Let λ and μ be two positive Borel measures on \mathbb{R}^n such that λ and μ are finite on compact sets and for every continuous function f on \mathbb{R}^n with compact support,

$$\int_{\mathbb{R}^n} f d\lambda = \int_{\mathbb{R}^n} f d\mu$$

Show that $\lambda = \mu$.

(8) Let μ be a finite real measure on a measurable space (X, \mathcal{B}) . In particular,

 $-\infty < \mu(E) < +\infty$, for all $E \in \mathcal{B}$.

We call A a positive set (resp. negative set) of μ if $\mu(E) \ge 0$ (resp. $\mu(E) \le 0$) for all measurable subset E of A.

(a) Let

 $b = \inf\{\mu(E) : E \text{ is a negative set of } \mu\}.$

Prove that there exist a $B \in \mathcal{B}$ such that $\mu(B) = b$, and B is a negative set of μ .

(b) Let $A = X \setminus B$. Prove that A is a positive set of μ .

[REMARK. We call $X = A \cup B$ the Hahn decomposition of X and $\mu = \mu_+ - \mu_-$, where $\mu_+(E) = \mu(E \cup A)$ and $\mu_-(E) = \mu(E \cup B)$, the Jordan decomposition of μ .]

- (9) Let f be a real-valued integrable function on [0, 1].
 - (a) Suppose all its moments

$$m_n(f) = \int_0^1 f(x) x^n \, dx = 0, \quad n = 0, 1, 2, \dots$$

Prove that f = 0 a.e. on [0, 1].

(b) Suppose

$$\int_0^x f(t) \, dt = 0$$

for all x in [0, 1]. Prove that f = 0 a.e. on [0, 1].

(10) For $0 < \alpha < 1$, let

$$\mathcal{M}_{\alpha} = \{ E \subseteq [0, 1] : E \text{ is measurable and } m(E) = \alpha \}.$$

Let $f \in L^1[0,1]$. If

$$\int_E f \, dx = 0, \quad \text{for each } E \text{ in } \mathcal{M}_{\alpha},$$

show that f = 0 a.e. on [0, 1].

[Hint: Consider the sets on which f > 0, f < 0 and f = 0. Show that the conclusion is true if $0 < \alpha \le 1/2$. If $1/2 < \alpha < 1$, show that $\int_E f \, dx = 0$, for all E in $\mathcal{M}_{1-\alpha}$.]