Qualified Examination: Real Analysis Spring 2023

- 1. (10%) Let E be a set in $\mathbf{R}^{\mathbf{n}}$. Prove or disprove that E is measurable in $\mathbf{R}^{\mathbf{n}}$ if and only if for all $\epsilon > 0$ there exist an open set $G_{\epsilon} \subset \mathbf{R}^{\mathbf{n}}$ and a closed set $F_{\epsilon} \subset \mathbf{R}^{\mathbf{n}}$ such that $F_{\epsilon} \subset E \subset G_{\epsilon}$ and $\mu_n^*(G_{\epsilon} \setminus F_{\epsilon}) < \epsilon$.
- 2. (a) (10%) State and prove Lusin's Theorem for a real-valued measurable function whose domain has finite measure in **R**.
 - (b) (5%) Can we generalize Lusin's theorem for a real-valued measurable function defined on \mathbf{R} ? Justify your answer.
- 3. (a) (10%) Suppose $\{f_n\}$ is a sequence of nonnegative, measurable functions in **R**. Show that

$$\int_{\mathbf{R}} \liminf f_n \le \liminf \int_{\mathbf{R}} f_n.$$

- (b) (5%) Can we drop out the nonnegativity of f_n in (a)? Justify your answer.
- 4. Let f be integrable over \mathbf{R} .
 - (a) (5%) Show that for all $\epsilon > 0$, there is a continuous function f_{ϵ} on **R** which vanishes outside a bounded set and

$$\int_{\mathbf{R}} |f - f_{\epsilon}| < \epsilon$$

(b) (10%) Let g be a bounded measurable function on **R**. Show that

$$\lim_{t \to 0} \int_{\mathbf{R}} g(x) [f(x) - f(x+t)] dx = 0.$$

5. (10%) Let g be integrable over [a, b] and define f on [a, b] by

$$f(x) = \int_{a}^{x} g$$

for all $x \in [a, b]$. Show that f is differentiable almost everywhere on (a, b).

- 6. Let $E \subset \mathbf{R}^n$ be a measurable set and $1 \leq p < \infty$. Suppose $\{f_n\}$ is a sequence in $L^p(E)$ that converges pointwise a.e. on E to the function $f \in L^p(E)$.
 - (a) (5%) Show that if $f_n \to f$ in $L^p(E)$, then $||f_n||_{L^p(E)} \to ||f||_{L^p(E)}$ as $n \to \infty$.
 - (b) (10%) Prove or disprove that if $||f_n||_{L^p(E)} \to ||f||_{L^p(E)}$ as $n \to \infty$, then $f_n \to f$ in $L^p(E)$.
- 7. (10%) Let $1 . Suppose T is a bounded linear functional on <math>L^p[0, 1]$. Show that there is a function $g \in L^{\frac{p}{p-1}}[0, 1]$ such that

$$T(f) = \int_{[0,1]} g \cdot f \text{ for all } f \in L^p[0,1].$$

8. (10%) Let f be of bounded variation on [0, 1]. Show that there is an absolutely continuous function g on [0, 1], and a function h on [0, 1] that is of bounded variation and has h' = 0 a.e. on [0, 1], for which f = g + h on [0, 1]. Then show that this decomposition is unique except for addition of constants.