

National Sun Yat-Sen University

Qualifying Exam - Real Analysis

Time:

Total points available: 100

Name and student number:

- Unless otherwise stated, all integral signs stands for Lebesgue integrals.
- \mathbb{Q} is the set of rational numbers, and \mathbb{R} is the set of real numbers.
- For a fixed $1 \le p < \infty$, $||f||_p := \left(\int_0^1 |f(x)|^p dx\right)^{1/p}$ and $L^p([0,1]) := \{f : ||f||_p < \infty\}.$

1. (10 points) Let
$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0,1]; \\ 0 & \text{if } x \in \mathbb{Q}^c \cap [0,1]. \end{cases}$$

- (a) (5 points) Is f Riemann integrable? If so, find the Riemann integral $\int_0^1 f(x) dx$. Justify your answer.
- (b) (5 points) Is f Lebesgue integrable? If so, find the Lebesgue integral $\int_0^1 f(x) dx$. Justify your answer.

2. (20 points) Let
$$f_n(x) = \begin{cases} \frac{1}{n} & \text{if } x \in (0,n); \\ 0 & \text{otherwise} \end{cases}$$
 and $f(x) = 0$ for all $x \in \mathbb{R}$.

- (a) (10 points) Prove that $f_n \to f$ uniformly on $[0,\infty)$.
- (b) (5 points) For each fixed n, compute $\int_0^\infty f_n(x) dx$.
- (c) (5 points) Is $\lim_{n\to\infty} \int_0^\infty f_n(x) dx = \int_0^\infty \lim_{n\to\infty} f_n(x) dx$? If not, why?
- 3. (20 points) Let 1 be fixed real numbers.
 - (a) (10 points) Prove that $L^{q}([0,1]) \subseteq L^{p}([0,1])$.
 - (b) (10 points) Is the above assertion still valid if the domain is \mathbb{R} ? Prove or disprove $L^q(\mathbb{R}) \subseteq L^p(\mathbb{R})$.
- 4. (10 points) Let $\{f_n\} \subset L^p([0,1])$. Suppose that $||f_n f||_p \to 0$. Show that $f_n \to f$ in measure.
- 5. (10 points) Let $\{f_n\}$ be a sequence of nonnegative measurable functions defined on [0,1]. Suppose that $f_n \leq 10$ for all n and $f_n(x) \to 7$ for almost all $x \in [0,1]$. Find $\lim_{n\to\infty} \int_0^1 f_n(x) dx$.
- 6. (20 points) Let f be the Cantor-Lebesgue function (see Appendix below for a brief recall) defined on [0, 1] and let **C** denote the Cantor Set (in [0, 1]).
 - (a) (5 points) For $x \in [0, 1] \setminus \mathbf{C}$, find f'(x).
 - (b) (5 points) Find $\int_0^1 f'(x) dx$.

- (c) (5 points) Does $\int_0^1 f'(x) dx = f(1) f(0)$? If not, why?
- (d) (5 points) Show that f(1/4) = 1/3.
- 7. (10 points) Suppose that f is nonnegative. Show that if $\int_0^1 f(x) dx = 0$ then f = 0 for almost all $x \in [0, 1]$.

1 Appendix

In this appendix, we recall the Cantor set and the Cantor-Lebesgue function.

Consider the closed interval [0, 1]. We begin by subdividing [0, 1] into thirds and removing the middle third. Then we repeat the same procedure to the remaining intervals; that is, we subdivide the intervals $[0, \frac{1}{3}]$ and $[\frac{2}{3}, 1]$ into thirds and remove their middle thirds. Repeating this process, we will reach the Cantor set **C**.

Let C_k to denote the union of the intervals left at the k-th stage of the construction of the Cantor set. Define $D_k := [0,1] \setminus C_k$. Then D_k consists of the $2^k - 1$ intervals I_j^k (ordered from left to right) removed in the first k stages of constructions of the Cantor set. Let f_k be the continuous function on [0,1] which satisfies $f_k(0) = 0$, $f_k(1) = 1$, $f_k(x) = j2^{-k}$ on I_j^k , $j = 1, \ldots, 2^k - 1$, and which is linear on each interval of C_k . Finally, the Cantor-Lebesgue function f is defined to be the uniform limit of f_k , i.e., $f := \lim_{k \to \infty} f_k$.