National Sun Yat-Sen University

Qualifying Exam - Real Analysis

Time:
Total points available: 100
Name and student number:

- Unless otherwise stated, all integral signs stands for Lebesgue integrals.
- \mathbb{Q} is the set of rational numbers, and \mathbb{R} is the set of real numbers.
- For a fixed $1 \leq p<\infty,\|f\|_{p}:=\left(\int_{0}^{1}|f(x)|^{p} d x\right)^{1 / p}$ and $L^{p}([0,1]):=\left\{f:\|f\|_{p}<\infty\right\}$.

1. (10 points) Let $f(x)=\left\{\begin{array}{lll}1 & \text { if } & x \in \mathbb{Q} \cap[0,1] ; \\ 0 & \text { if } & x \in \mathbb{Q}^{c} \cap[0,1] .\end{array}\right.$
(a) (5 points) Is f Riemann integrable? If so, find the Riemann integral $\int_{0}^{1} f(x) d x$. Justify your answer.
(b) (5 points) Is f Lebesgue integrable? If so, find the Lebesgue integral $\int_{0}^{1} f(x) d x$. Justify your answer.
2. (20 points) Let $f_{n}(x)=\left\{\begin{array}{ll}\frac{1}{n} & \text { if } x \in(0, n) ; \\ 0 & \text { otherwise }\end{array} \quad\right.$ and $f(x)=0$ for all $x \in \mathbb{R}$.
(a) (10 points) Prove that $f_{n} \rightarrow f$ uniformly on $[0, \infty)$.
(b) (5 points) For each fixed n, compute $\int_{0}^{\infty} f_{n}(x) d x$.
(c) (5 points) Is $\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(x) d x=\int_{0}^{\infty} \lim _{n \rightarrow \infty} f_{n}(x) d x$? If not, why?
3. (20 points) Let $1<p<q<\infty$ be fixed real numbers.
(a) (10 points) Prove that $L^{q}([0,1]) \subseteq L^{p}([0,1])$.
(b) (10 points) Is the above assertion still valid if the domain is \mathbb{R} ? Prove or disprove $L^{q}(\mathbb{R}) \subseteq L^{p}(\mathbb{R})$.
4. (10 points) Let $\left\{f_{n}\right\} \subset L^{p}([0,1])$. Suppose that $\left\|f_{n}-f\right\|_{p} \rightarrow 0$. Show that $f_{n} \rightarrow f$ in measure.
5. (10 points) Let $\left\{f_{n}\right\}$ be a sequence of nonnegative measurable functions defined on $[0,1]$. Suppose that $f_{n} \leq 10$ for all n and $f_{n}(x) \rightarrow 7$ for almost all $x \in[0,1]$. Find $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x$.
6. (20 points) Let f be the Cantor-Lebesgue function (see Appendix below for a brief recall) defined on $[0,1]$ and let \mathbf{C} denote the Cantor Set (in $[0,1]$).
(a) (5 points) For $x \in[0,1] \backslash \mathbf{C}$, find $f^{\prime}(x)$.
(b) (5 points) Find $\int_{0}^{1} f^{\prime}(x) d x$.
(c) (5 points) Does $\int_{0}^{1} f^{\prime}(x) d x=f(1)-f(0)$? If not, why?
(d) (5 points) Show that $f(1 / 4)=1 / 3$.
7. (10 points) Suppose that f is nonnegative. Show that if $\int_{0}^{1} f(x) d x=0$ then $f=0$ for almost all $x \in[0,1]$.

1 Appendix

In this appendix, we recall the Cantor set and the Cantor-Lebesgue function.
Consider the closed interval $[0,1]$. We begin by subdividing $[0,1]$ into thirds and removing the middle third. Then we repeat the same procedure to the remaining intervals; that is, we subdivide the intervals $\left[0, \frac{1}{3}\right]$ and $\left[\frac{2}{3}, 1\right]$ into thirds and remove their middle thirds. Repeating this process, we will reach the Cantor set \mathbf{C}.

Let C_{k} to denote the union of the intervals left at the k-th stage of the construction of the Cantor set. Define $D_{k}:=[0,1] \backslash C_{k}$. Then D_{k} consists of the $2^{k}-1$ intervals I_{j}^{k} (ordered from left to right) removed in the first k stages of constructions of the Cantor set. Let f_{k} be the continuous function on $[0,1]$ which satisfies $f_{k}(0)=0, f_{k}(1)=1, f_{k}(x)=j 2^{-k}$ on I_{j}^{k}, $j=1, \ldots, 2^{k}-1$, and which is linear on each interval of C_{k}. Finally, the Cantor-Lebesgue function f is defined to be the uniform limit of f_{k}, i.e., $f:=\lim _{k \rightarrow \infty} f_{k}$.

