National Sun Yat-sen University Department of Applied Mathematics

Ph.D. Qualifying Exam

Mathematical Statistics

INSTRUCTIONS:

- You have **240 minutes** to complete this exam which consists of **10 questions**.
- Please show all your steps to receive partial credit.
- Please organize your work in a reasonably neat and coherent way.
- Please label the answer clearly.
- Notations: i.i.d., independent and identically distributed; cdf, cumulative distribution function; pdf, probability density function; mle, maximum likelihood estimator.

Question	1	2	3	4	5	6	7	8	9	10	Total
Points	10	10	10	10	10	10	10	10	10	10	100
Score											

Question 1. Let X and Y be i.i.d. N(0,1) random variables, and define $Z=\min(X,Y)$. Find the pdf of Z^2 .

Question 2. Let X_1, \ldots, X_n be i.i.d. uniform random variables on the interval $[0, \theta]$ with $\theta > 0$ and let $X_{(1)} < \cdots < X_{(n)}$ denote the order statistics. Define the range and midrange as $R = X_{(n)} - X_{(1)}$ and $V = (X_{(1)} + X_{(n)})/2$, respectively. Find the joint pdf of (R, V).

Question 3. Let X and Y be random variables with finite means and variances. Find a function g^* such that

$$g^* = \operatorname*{arg\,min}_{g \in \mathcal{G}} E[\{Y - g(X)\}^2],$$

where \mathcal{G} is a class of all square-integrable functions of X, i.e., $E|g(X)^2| < \infty$ for all $g \in \mathcal{G}$.

Question 4. Let F be any cdf with finite mean θ and variance $\tau^2 > 0$, and X_1, \ldots, X_n be i.i.d., where $X_i \sim F$ with probability $\delta \in (0,1)$ and $X_i \sim N(\mu, \sigma^2)$ with probability $1 - \delta$. Prove that

$$\operatorname{Var}(\bar{X}) = (1 - \delta) \frac{\sigma^2}{n} + \delta \frac{\tau^2}{n} + \delta (1 - \delta) \frac{(\theta - \mu)^2}{n}, \quad \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Question 5. Let X_1, \ldots, X_n be i.i.d. Poisson (λ) , and let λ have a $\Gamma(\alpha, \beta)$ distribution with $\alpha, \beta > 0$, the conjugate family for the Poisson.

- (a) Find the posterior distribution of λ .
- (b) Calculate the posterior mean and variance.

Question 6. Let X_1, \ldots, X_n be i.i.d. uniform random variables on the interval $[0, \theta]$ with unknown $\theta > 0$.

- (a) Find the mle for θ , denoted as $\hat{\theta}_{\text{mle}}$.
- (b) Show that $\hat{\theta}_{\mathrm{mle}}$ is a consistent estimator for θ .

Question 7. Let X_1, \ldots, X_n be i.i.d. random samples from the pdf

$$f(x) = 1, \quad \theta - \frac{1}{2} < x < \theta + \frac{1}{2},$$

where θ is an unknown parameter.

- (a) Find a point estimator for θ .
- (b) Find a $100(1-\alpha)\%$ (or approximate $100(1-\alpha)\%$) confidence interval for θ , where $0<\alpha<1$.

Question 8. Let X_1, \ldots, X_n be i.i.d. random samples from the pdf

$$f(x) = \theta x^{\theta - 1}, \quad 0 \le x \le 1,$$

where $\theta > 0$ is an unknown parameter.

- (a) Find a point estimator for θ .
- (b) Find a level α (or approximate level α) test for testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$ for some given $\theta_0 > 0$, where $0 < \alpha < 1$.

Question 9. Let X be a random variable taking on the values 0 and 1 with probabilities p and 1-p, respectively, where $p \in [1/3, 2/3]$ is an unknown parameter. We consider the estimation of p based on a single observation X.

- (a) Find the mle for p, denoted as \hat{p}_{mle} .
- (b) Let $\hat{p}_{\text{naive}} = 1/2$ be the naive estimator that always estimates p as 1/2. Determine which estimator is better by comparing their mean squared errors.

Question 10. State and prove the Central Limit Theorem for a sequence of i.i.d. random variables. Please clearly specify the assumptions and conditions required for the theorem, and explain how they are utilized in your proof.