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INSTRUCTIONS:

� You have 240 minutes to complete this exam which consists of 10 questions.

� Please show all your steps to receive partial credit.

� Please organize your work in a reasonably neat and coherent way.

� Please label the answer clearly.

� Notations: i.i.d., independent and identically distributed; cdf, cumulative distribu-

tion function; pdf, probability density function; mle, maximum likelihood estimator.
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Points 10 10 10 10 10 10 10 10 10 10 100
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Question 1. Let X and Y be i.i.d. N(0, 1) random variables, and define Z = min(X, Y ).

Find the pdf of Z2.
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Question 2. Let X1, . . . , Xn be i.i.d. uniform random variables on the interval [0, θ] with

θ > 0 and let X(1) < · · · < X(n) denote the order statistics. Define the range and midrange

as R = X(n) −X(1) and V = (X(1) +X(n))/2, respectively. Find the joint pdf of (R, V ).
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Question 3. Let X and Y be random variables with finite means and variances. Find a

function g∗ such that

g∗ = argmin
g∈G

E[{Y − g(X)}2],

where G is a class of all square-integrable functions of X, i.e., E|g(X)2| < ∞ for all g ∈ G.
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Question 4. Let F be any cdf with finite mean θ and variance τ 2 > 0, and X1, . . . , Xn

be i.i.d., where Xi ∼ F with probability δ ∈ (0, 1) and Xi ∼ N(µ, σ2) with probability

1− δ. Prove that

Var(X̄) = (1− δ)
σ2

n
+ δ

τ 2

n
+ δ(1− δ)

(θ − µ)2

n
, X̄ =

1

n

n∑
i=1

Xi.
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Question 5. Let X1, . . . , Xn be i.i.d. Poisson(λ), and let λ have a Γ(α, β) distribution

with α, β > 0, the conjugate family for the Poisson.

(a) Find the posterior distribution of λ.

(b) Calculate the posterior mean and variance.

6 of 11 February 13, 2025



NSYSU, Department of Applied Mathematics Mathematical Statistics

Question 6. Let X1, . . . , Xn be i.i.d. uniform random variables on the interval [0, θ] with

unknown θ > 0.

(a) Find the mle for θ, denoted as θ̂mle.

(b) Show that θ̂mle is a consistent estimator for θ.
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Question 7. Let X1, . . . , Xn be i.i.d. random samples from the pdf

f(x) = 1, θ − 1

2
< x < θ +

1

2
,

where θ is an unknown parameter.

(a) Find a point estimator for θ.

(b) Find a 100(1− α)% (or approximate 100(1− α)%) confidence interval for θ, where

0 < α < 1.
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Question 8. Let X1, . . . , Xn be i.i.d. random samples from the pdf

f(x) = θxθ−1, 0 ≤ x ≤ 1,

where θ > 0 is an unknown parameter.

(a) Find a point estimator for θ.

(b) Find a level α (or approximate level α) test for testing H0 : θ ≤ θ0 versus H1 : θ > θ0

for some given θ0 > 0, where 0 < α < 1.
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Question 9. Let X be a random variable taking on the values 0 and 1 with probabilities

p and 1− p, respectively, where p ∈ [1/3, 2/3] is an unknown parameter. We consider the

estimation of p based on a single observation X.

(a) Find the mle for p, denoted as p̂mle.

(b) Let p̂naive = 1/2 be the naive estimator that always estimates p as 1/2. Determine

which estimator is better by comparing their mean squared errors.
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Question 10. State and prove the Central Limit Theorem for a sequence of i.i.d. random

variables. Please clearly specify the assumptions and conditions required for the theorem,

and explain how they are utilized in your proof.
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